
Dyalog Native Files

CHEAT SHEET

Dyalog v19.0

Native Files

{R} ← {X} ⎕MKDIR Y

Creates new fully-qualified files/directories Y along with intermediate directories if required, as
specified by X. X can be any summation of the following values (maximum value = 3):
• 0 : directory Y is only created if its path already exists and its base name does not exist. This

is the default.
• 1 : no action is taken if directory Y already exists.
• 2 : directory Y and any part of its path that does not already exist is created.
Returns 1 for each file/directory specified in Y that is created successfully, 0 otherwise (if X is 0
or 2 then an error message is also generated if directory Y cannot be created successfully).

{R} ← X ⎕NAPPEND Y
Appends the ravel of array X to the end of the native file that has tie number Y[1]; optionally,
Y[2] can specify the conversion code to use to convert array X (by default, 80 is assumed when
using the Unicode version – see Conversion Codes).

{R} ← X ⎕NCOPY Y

Copies native files/directories from one or more sources specified by Y to destination X.
If X specifies an existent directory then each source in Y is copied into that directory, otherwise X
specifies the name of the copy. X must specify an existent directory if Y contains multiple names
or if the Wildcard variant option (Boolean) is set. For files, variant options can preserve attributes
when copying (PreserveAttributes, Boolean) and define behaviour if the target file already exists
(IfExists can be 'Error', 'Skip', 'Replace' or 'ReplaceIfNewer'). The ProgressCallBack variant option
invokes an APL callback function before, during, and after copying each file/directory.

{R} ← X ⎕NCREATE Y
Creates a new native file with name X and file tie number Y; a tie number of 0 allocates the next
available tie number to the file. Optionally (requires variant) allows semi-automatic naming of
files and for existing files to be overwritten.

{R} ← {X} ⎕NDELETE Y

Deletes each fully-qualified file/empty directory specified in Y, returning a shy result of the count
of top-level entities successfully deleted. A wildcard option (requires variant) can be used.
If a file/directory specified in Y does not exist then behaviour is determined by X. X can be any
summation of the following values (maximum value = 3):
• 0 : each file/directory specified in Y must exist. This is the default.
• 1 : no action is taken if a file/directory specified in Y does not exist.
• 2 : any non-empty directory specified in Y and its contents are deleted.

{R} ← X ⎕NERASE Y Erases the tied native file that has name X and file tie number Y.

R ← ⎕NEXISTS Y
Returns 1 for each of the fully-qualified files/directories specified in Y that exists (can be
accessed), 0 otherwise.

R ← {X} ⎕NGET Y

Reads a text file and returns a 3-element vector in which:
• [1] is the character data in the file.
• [2] is a character vector specifying the file encoding (see File Encoding).
• [3] is numeric and is either ⍬ (if no line separator was found in the file) or a vector

specifying the first newline separator found in the file (see Line Separators).
Y is either a character vector/scalar containing the name of the file to be read or a 2-item vector
in which [1] is the filename and [2] is an integer scalar specifying flags:
• if flags is 0 then R[1] is a character vector. This is the default.
• if flags is 1 then R[1] is a nested array of character vectors.
X is a character vector specifying the decoding format to use if the specified file does not start
with a recognised BOM (see File Encoding). If no BOM is present and no decoding format is
specified, then the file is examined and its encoding format is deduced.

R ← {X} ⎕NINFO Y

Returns an array of the information specified by X about Y (file/directory names or native file tie
numbers). X can specify any of the following values, in any order:
• 0 : Name of Y. This is the default.
• 1 : Type of Y. This can be 0 (not known), 1 (directory), 2 (file), 3 (character device) or 4

(symbolic link). On UNIX and Mac OS, can also be 5 (block device), 6 (FIFO) or 7 (socket).
• 2 : Size of Y in bytes.
• 3 : The time Y was last modified as a timestamp in ⎕TS format (local time).
• 4 : The user ID of the owner of Y.
• 5 : The name of the owner of Y.

Dyalog Native Files

CHEAT SHEET

Dyalog v19.0

• 6 : Whether Y is hidden.
• 7 : Target of symbolic link – only applies when Type=4.
• 8 : Current file position (offset) – only applies when the source in Y is a native file tie number.
• 9 : The time Y was last accessed as a timestamp in ⎕TS format if available (local time).
• 10 : The time Y was created as a timestamp in ⎕TS format if available (local time).
• 11 : Whether Y can be read.
• 12 : Whether Y can be written to.
• 13: The time Y was last modified as a Dyalog Date Number (UTC).
• 14: The time Y was last accessed as a Dyalog Date Number (UTC).
• 15: The time Y was created (if available, otherwise the time of the last status change) as a

Dyalog Date Number (UTC).
The file/directory name can include wildcard options, recursion through sub-directories and
property reporting for symbolic links (require variant); in these cases, the result R remains the
same shape as X but its depth increases.

{R} ← X ⎕NLOCK Y

Changes the lock status (as defined by X) of part of the native file that has file tie number Y[1];
optionally, Y[2] can define the offset from 0 of the first byte to apply the lock change to
(defaults to 0) and Y[3] can specify the number of bytes impacted by the lock change (defaults
to the maximum possible file size) (see File Encoding).

R ← ⎕NNAMES Lists the names of all tied native files.

{R} ← X ⎕NMOVE Y

Moves native files/directories from one or more sources specified by Y to destination X.
If X specifies an existent directory then each source in Y is moved into that directory. X must
specify an existent directory if Y contains multiple names or if the Wildcard variant option
(Boolean) is set. For files, variant options can define behaviour if moving to a different file system
(RenameOnly, Boolean) and or if the target file already exists (IfExists can be 'Error' or 'Skip'). The
ProgressCallBack variant option invokes an APL callback function before, during, and after moving
each file/directory.

R ← ⎕NNUMS Lists the tie numbers of all tied native files.

R ← {X} ⎕NPARTS Y

Splits the fully-qualified files/directories specified in Y into constituent parts, returning a
3-element vector (or vector of 3-element vectors if Y comprises multiple files/directories) in
which:
• R[1] is the specified path. If X is 1 then the fully-qualified path is derived and returned.
• R[2] is the base name, that is, the filename stripped of its path and extension.
• R[3] is the file extension, including the leading . character.

{R} ← X ⎕NPUT Y

Writes character data X to a text file Y and returns (shy) the number of bytes successfully written
to the file.
Y is either a character vector/scalar containing the name of the file to be written or a 2-item
vector in which [1] is the filename and [2] is an integer scalar specifying flags:
• if flags is 0 then, if the file already exists, it will not be overwritten and an error is

generated. This is the default.
• if flags is 1 then the file will be written irrespective of whether it already exists.

• if flags is 2 then X will be appended to Y.
X can comprise up to three elements:
• [1] is a vector of character vectors, each of which represents a line in the file to be written,

or a simple character vector.
• [2] is a character vector specifying the encoding to use (see File Encoding). Optional – the

default is UTF-8-NOBOM.
• [3] is numeric and is either ⍬ (same as the default) or a scalar/vector specifying the newline

separator to use (see Line Separators). Optional – the default is (13 10) on Microsoft
Windows and 10 on other platforms.

R ← ⎕NREAD Y
Reads the content of the native file identified by file tie number Y[1]; Y[2] specifies the
conversion code to use (see Conversion Codes), Y[3] specifies the count (see Conversion Codes)
and, optionally, Y[4] can define the offset from 0 of the first byte to read.

{R} ← X ⎕NRENAME Y Renames the tied native file that has file tie number Y to have name X.

Dyalog Native Files

CHEAT SHEET

Dyalog v19.0

{R ← X ⎕NREPLACE Y
Replaces content in a native file identified by file tie number Y[1] with X; Y[2] defines the
offset from 0 of the first byte to replace and, optionally, Y[3] specifies the conversion code to
use (by default, 80 is assumed when using the Unicode version) (see Conversion Codes).

{R} ← X ⎕NRESIZE Y
Changes the size of the native file that has file tie number Y to size X (either by truncating the file
or by extending it with undefined additional bytes).

R ← ⎕NSIZE Y Returns the size in bytes of the native file that has file tie number Y.

{R} ← X ⎕NTIE Y
Ties the native file that has name X using file tie number Y[1]; optionally, Y[2] can specify the
type of access needed by other users (see Access Codes).

{R} ← ⎕NUNTIE Y
Unties all native files that have a tie number in vector Y (⎕NUNTIE ⍬ does not untie any files
but flushes all file caches to disk) and returns the tie numbers of native files that have been
untied.

{R} ←{X} ⎕NXLATE Y

Associates the native file that has tie number Y with character translation vector X. Note that:
• if X is not specified then the currently-associated translation vector is returned.
• if X has the value (⍳256)-⎕IO then the translation process is bypassed and raw

input/output is provided.
• if Y is set to 0, then the translate vector used by ⎕DR is used.
Unicode version only: This is only relevant when processing native files that contain characters
expressed as indices into ⎕AV.

Access Codes
The access codes used by ⎕NTIE are integer values calculated as the sum of:

• the type of access needed from users who have already tied the native file
• the type of access to grant to users who subsequently try to open the file while you have it open

Needed from existing users Granted to subsequent users

0 read access 0 compatibility mode 48 write access

1 write access 16 no access (exclusive) 64 read and write access

2 read and write access 32 read access

Conversion Codes
The conversion codes used by ⎕NAPPEND, ⎕NREAD and ⎕NREPLACE vary according to the installation of Dyalog used
to read the native file; the following tables show the conversion codes for the Unicode and Classic version respectively.

Value Number of
Bytes Result Type Result Shape Value Number of

Bytes Result Type Result Shape

11 count 1 bit Boolean 8 x count 11 count 1 bit Boolean 8 x count

80 count 8 bit character count - - - -

82* count 8 bit character count 82 count 8 bit character count

83 count 8 bit integer count 83 count 8 bit integer count

160 2 x count 16 bit character count - - - -

163 2 x count 16 bit integer count 163 2 x count 16 bit integer count

320 4 x count 32 bit character count - - - -

323 4 x count 32 bit integer count 323 4 x count 32 bit integer count

645 8 x count 64 bit floating count 645 8 x count 64 bit floating count

1287 16 x count 128 bit decimal count 1287 16 x count 128 bit decimal count

1289 16 x count 128 bit complex count 1289 16 x count 128 bit complex count

* Conversion code 82 is permitted in the Unicode Edition for compatibility and causes 1-byte data on file to be
translated (according to ⎕NXLATE) from ⎕AV indices into normal (Unicode) characters of type 80, 160 or 320.

Dyalog Native Files

CHEAT SHEET

Dyalog v19.0

File Encoding
The file encoding used by ⎕NGET and ⎕NPUT. The UTF formats can be qualified with -BOM (for example, UTF-8-BOM)
or –NOBOM (for example, UTF-16LE-NOBOM) to specify whether a BOM is/should be present; this qualification is always
present when returned by ⎕NGET.

Encoding Description

UTF-8
Data is encoded into UTF-8 format.
If -BOM or -NOBOM is not appended, the default is -NOBOM.

UTF-16
UTF-16BE
UTF-16LE

Data is encoded into UTF-16 format with either big or little endianness. The default for UTF-16 is the
endianness of the host system (BE on AIX platforms, LE on others).
If -BOM or -NOBOM is not appended, the default is -BOM.

UTF-32
UTF-32BE
UTF-32LE

Data is encoded into UTF-32 format with either big or little endianness. The default for UTF-32 is the
endianness of the host system (BE on AIX platforms, LE on others).
If -BOM or -NOBOM is not appended, the default is -BOM.

ASCII Data is encoded into 7-bit ASCII format

Windows-1252 Data is encoded into 8-bit Windows-1252 format

ANSI ANSI is a synonym of Windows-1252

Line Endings
The line terminators recognised by ⎕NGET and ⎕NPUT.

For ⎕NGET:
• if R[1] is simple, then it comprises the contents of the file with all line separators normalised to ⎕UCS 10.

• if R[1] is nested, then it comprises the contents of the file split on the occurence of any of the line separators.

Value Char Description Notes

13 CR Carriage Return (U+000D) Newline separators recognised by ⎕NGET (R[3]) and
⎕NPUT (X[3]).

10 LF Line Feed (U+000A)

13 10 CRLF Carriage Return followed by Line Feed

133 NEL New Line (U+0085)

11 VT Vertical Tab (U+000B)

12 FF Form Feed (U+000C)

2028 LS Line Separator (U+2028)

2029 PS Paragraph Separator (U+2029)
In addition, ⎕NPUT's NEOL variant specifies how embedded line endings are treated (0 = embedded line ending
characters are preserved as is, 1 = every embedded LF is replaced by the host-specific line terminator (the default), and
2 = every embedded line ending character is replaced by the host-specific line terminator).

File Locking
Unlike component files, which can be tied with an exclusive tie or a share tie, native files cannot be tied in different
ways. Instead, ⎕NLOCK is used to lock byte ranges within files, thereby managing access between users. There are three
possible lock statuses:

• 1 means unlock
• 2 means read (share) lock – multiple read locks can exist over the same byte-range. The presence of a read

lock prevents a write lock being obtained
• 3 means write lock – only one write lock can exist for a specific byte-range of a native file. The presence of a

write lock prevents a read lock being obtained
The lock status can also, optionally, define a timeout period in seconds; if this period is exceeded before the lock status
change has occurred, then a TIMEOUT error is displayed (defaults to no timeout limit).

Different file servers can follow different locking standards – ⎕NLOCK does not standardise this.

	Access Codes
	Conversion Codes
	File Encoding
	The file encoding used by ⎕NGET and ⎕NPUT. The UTF formats can be qualified with -BOM (for example, UTF-8-BOM) or –NOBOM (for example, UTF-16LE-NOBOM) to specify whether a BOM is/should be present; this qualification is always present when returned by...
	Line Endings
	File Locking

